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Abstract. The void probability in the QCD-inspired FRITIOF model is studied for both unrestricted and
restricted phase space. Comparison to phenomenological clan model is presented. The observed enhance-
ment of void probability can be accommodated with the clan model when the randomly produced clans
decay with the geometric distribution instead of the logarithmic one. A simple parameterization is intro-
duced to reproduce the shift of weighting factor with the size of restricted phase space. The predictions to
the multiplicity distributions of p̄p collision at

√
s = 10 TeV is presented.

1 Introduction

The multiplicity distribution is the most basic measure-
ment in the phenomena of multiple production in high
energy collisions. The detailed shape of the distribution
reflects the underlying dynamics and statistics. In this
paper we study the multiplicity distribution in the low
multiplicity region, especially the void probability.

The void probability is defined as the probability for
events with zero particle. It is easy to understand the
non-zero void probability for the multiplicity distribution
within restricted phase space. The corresponding events
have no particles within the restricted phase space,i.e., all
the particles locate outside the restricted region, the so-
called rapidity gap events. Even for the multiplicity dis-
tribution in the full phase space, the non-zero void prob-
ability is not difficult to interpret, as one does not record
all the outgoing particles. The void probability is not only
concerned with the proper normalization of the distribu-
tion, but also relates to underlying dynamics through the
higher order correlations.

Consider the generating function G(z) for multiplicity
distribution P (n) defined as

G(z) =
∞∑
n=0

zn P (n) . (1)

The above relationship can be reversed to obtain

P (n) =
1
n!

(
d

dz

)n

G(z)
∣∣∣∣
z=0

. (2)

The proper normalization of P (n) implies

1 = G(1) , (3)

and the average multiplicity is given by

〈n〉 =
d

dz
G(z)

∣∣∣∣
z=1

. (4)

The void probability P (0) is related to the generating
function through

P (0) = G(0) , (5)

and can be taken as another generating function for P (n):

P (n) = (−1)n
〈n〉n
n!

(
∂

∂ 〈n〉
)n

P (0) , (6)

where the differentiation is carried out with the correla-
tion functions held fixed [1]. Besides serving as a gener-
ating function, the void probability is also related to the
probability P (n) with n 6= 0 through various kinds of mo-
ments. The void probability P (0) can be written as an
expansion either in factorial moments or in cumulants,

P (0) =
∞∑
q=1

(−1)q
〈n〉q
q!

Fq , (7)

ln P (0) =
∞∑
q=1

(−1)q
〈n〉q
q!

Kq , (8)

where Fq and Kq denote the normalized factorial moments
and cumulants respectively. Therefore, the void probabil-
ity provides a good discriminator among various theoret-
ical models.

In data analysis, the low multiplicity region of multi-
ple production is always contaminated with the processes
from elastic scattering and diffraction dissociation. It is
not easy to separate these mechanisms from one another
by just observing the final hadron distribution. The ac-
curate data for low multiplicity region including the void
probability are scarce. In this paper we will study the low
multiplicity region of multiple production with the widely
used FRITIOF 7.02 model [2], which has had reasonable
success in accounting for the experimental data. Here our
objective is to study the predictions of the QCD-inspired
FRITIOF model concerning the void probability of the
multiple production, and to see if such predictions could
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be accommodated with the phenomenological clan model.
The clan model is briefly reviewed in Sect. 2. In Sect. 3,
we present the results from the numerical simulations of
the FRITIOF model. The discussions and conclusion are
presented in Sect. 4.

2 The clan model

In the clan model [3], the mechanism of multiple produc-
tion is described as a two-step process. In the first step, the
clans are produced randomly and distributed as a Poisson
distribution,

P1(n) =
λn

n!
e−λ . (9)

In the second step, each clan decays into final particles
independently with a given distribution P2(n). As the
clans are identified by the final particles, one requires that
each clan produces at least one particle,i.e., P2(0) = 0.
The multiplicity distribution is then determined by the
combination of P1(n) and P2(n). Specifically, the gener-
ating function of the resulted multiplicity distribution is
the convolution of the generating functions for P1(n) and
P2(n),

G(z) = G1 (G2(z)) , (10)

where G1(z) and G2(z) are the generating functions for
P1(n) and P2(n) respectively.

When P2(n) is taken as the logarithmic distribution

P2(n) ∝ bn

n
, (11)

the resulted multiplicity distribution is the negative bino-
mial distribution [3]. When P2(n) is taken as the geometric
distribution

P2(n) ∝ bn , (12)

the multiplicity distribution is the Ising distribution [4],
which can be obtained analytically from the nearest-neigh-
bor Ising model with lattice gas interpretation. There are
only two free parameters in these models, λ in P1(n) and
b in P2(n). In general, the distribution P2(n) can be deter-
mined from the multiplicity distribution P (n) unambigu-
ously. As the produced clan must decay,

P2(0) = G2(0) = 0 , (13)

the void probability is given by

P (0) = G(0) = G1(0) = P1(0) = e−λ . (14)

The generating function is given by

G(z) = eλ[G2(z)−1] , (15)

or equivalently

G2(z) = 1− 1
ln P (0)

ln G(z) . (16)

Fig. 1. Multiplicity distribution P (n) v.s. n for charged π±

in p̄p collisions at
√
s=540 GeV. The curves from top to bot-

tom are for pseudorapidity intervals ∆η=1, 2, 3, 4, 5, 6, 7, 8,
9, 10, and full phase space, respectively. The distribution for
the smallest interval is shown in the ordinary scale, and each
consecutive distribution is shifted down by a factor of

√
10.

The data points connected by solid lines are the predictions
of FRITIOF model. The dotted lines are fitted by the negative
binomial distributions and the grey bold-dashed lines are fitted
by the Ising distributions

For the first few n, the relationships between multiplicity
distributions P (n) and P2(n) are as follows

P2(1) = − 1
ln P (0)

(
P (1)
P (0)

)
, (17)

P2(2) = − 1
ln P (0)

(
P (2)
P (0)

− 1
2
P (1)2

P (0)2

)
, (18)

P2(3) = − 1
ln P (0)

(
P (3)
P (0)

− P (2)P (1)
P (0)2

+
1
3
P (1)3

P (0)3

)
,

(19)

P2(4) = − 1
ln P (0)

(
P (4)
P (0)

− P (3)P (1)
P (0)2

− 1
2
P (2)2

P (0)2

+
P (2)P (1)2

P (0)3
− 1

4
P (1)4

P (0)4

)
. (20)

Without accurate estimation of the void probability P (0),
the above relationships are hard to evaluate.

3 The FRITIOF model

Since the accurate data for the void probability are scarce,
we use the Monte Carlo program FRITIOF 7.02 [2] as an
event generator to study the low multiplicity region in
high-energy multiple productions. An ensemble of 5× 104
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minimum biased events is generated with default parame-
ters for p̄p collision at CERN Sp̄pS energy

√
s=540 GeV.

As the final particles are mainly pions, we record only π+,
π−, and π0 exclusively. The resulted multiplicity distribu-
tions for three types of pions and any of their combinations
are similar, which implies that the showing features are
the results of production mechanism in general, instead
of the specific dynamics like resonance. The multiplicity
distributions in the low multiplicity region including the
void probability for various pseudorapidity intervals ∆η
are shown in Fig. 1 for charged pions. As shown in the
figure, the values of P (0) are not equivalent to those ex-
pected by smooth extrapolation from P (n) at n 6= 0. A
dip is observed at P (1),i.e.,

P (0) > P (1) < P (2) . (21)

The void probability is greatly enhanced, especially in
the restricted pseudorapidity intervals. For the multiplic-
ity distributions of the single species, π−, π+, or π0, the
enhancement of void probability occurs at the pseudora-
pidity intervals 2 ≤ ∆η ≤ 8. For the distributions of all
pions or any of their combinations, the void probability
enhances even for the smallest interval ∆η = 1,i.e., the
dip is observed for the intervals ∆η ≤ 8. As these ob-
served features are the same for all pions, it is more likely
that they are originated from statistical effects in general
rather than from specific effects like resonance.

The predictions from the clan models is also shown
in the same figure for the negative binomial distributions
[3] and the Ising distributions [4]. The two parameters in
the clan models are fixed by the values of the average

multiplicity 〈n〉 and the dispersion D ≡
√
〈n2〉 − 〈n〉2 in

the simulations. Since the best-fitting process is not per-
formed, the shape of the distribution constitutes the pre-
dictions of the two models. For large multiplicity n ≥ 5,
these two models give almost the same result. Their dif-
ference is in the predictions of the low multiplicity re-
gion, especially the void probability. The negative bino-
mial distribution describes the multiplicity distribution in
the full phase space quite well, but fails to predict any dip
at P (1). The values of the void probability are underes-
timated for the restricted phase space. On the contrary,
the Ising distribution overestimates the void probability in
the full phase space, but the dip at P (1) for the restricted
phase space is fully reproduced. For the intervals ∆η ≤ 7,
the values of the void probability are also well described
by the Ising distribution. In summary, the multiplicity dis-
tribution in the full phase space is well described by the
negative binomial distribution, and the distribution in the
restricted phase space by the Ising distribution.

To further study the energy dependence of the ob-
served enhancement of the void probability, we generate
the same number of events for various collision energies
and then analyze the multiplicity distributions. The pseu-
dorapidity ranges for the void probability enhancement in-
crease with the increasing of energy. At

√
s=200 GeV, the

enhancement occurs for the intervals ∆η ≤ 7. At
√
s=540

GeV, the range of enhancement increases to ∆η ≤ 8; at√
s=900 and 1800 GeV, the range further increases to

∆η ≤ 9 and ∆η ≤ 10, respectively. The same features
are observed as mentioned previously. We note that the
inclusion of charged kaon K± does not change this obser-
vation.

4 Discussions and conclusion

We have shown that the accurate measurement of the void
probability can be used to discriminate the underlying dy-
namics of multiple production. Within the simulations of
the FRITIOF model, the resulted multiplicity distribution
can not be well described by the negative binomial distri-
bution. A systematic deviation is observed. Though the
overall shape of the distribution can be fitted by adjust-
ing the two free parameters, the low multiplicity region is
underestimated, especially the void probability. We find
that the distributions can be well described by Ising dis-
tribution and negative binomial distribution respectively
for the very small phase space and the full phase space. In
the clan model, this means that the decay distribution in
the restricted region is geometric distribution and that in
the unrestricted region is logarithmic. All the multiplicity
distributions observed are in-between these two limits.

The geometric distribution occurs quite naturally in
the parton shower model where the clans are identified
as the bremsstrahlung gluon jets. This distribution corre-
sponds to the simplest self-similar cascade process and is
expected to be a good approximation for QCD gluon jets
[5]. The generating function for the geometric distribution
is given by

Ggeo(z, ν) =
z

ν + z − νz
, (22)

where the parameter ν provides a clear intuition as the av-
erage multiplicity of the decay distribution and is related
to the parameter b of (12) through

ν =
1

1− b
. (23)

The logarithmic distribution can be taken as an average
over geometric distributions and the corresponding gener-
ating function can be written as

Glog(z, ν) =

∫ ν

1
Ggeo(z, ν′)

dν′

ν′∫ ν

1

dν′

ν′

, (24)

where the lower limit of integration is set to ν′ = 1 as
the produced clans must decay, and the average is per-

formed with weight
1
ν′

. To our knowledge, there is no

clear illustration why the weighting factor has to be
1
ν′

.
To accommodate the observed features of enhanced void
probability, we have to chose different weighting factors
for different pseudorapidity intervals. Phenomenologically
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Fig. 2. Multiplicity distributions P (n) v.s. n for charged π±

in p̄p collisions at
√
s=540 GeV. The data points are the pre-

dictions of FRITIOF model, the same as in Fig. 1. The solid
lines are the predictions of the clan model with parameter α
defined in (26)

a new parameter α is introduced and the generating func-
tion is written as

G2(z, ν) =

∫ ν

1
Ggeo(z, ν′) ν′αdν′∫ ν

1
ν′αdν′

, (25)

i.e., the weighting factor is parameterized to be ν′α. The
logarithmic and geometric distributions can be reproduced
by α = −1 and α→∞ respectively. As α varies from −1
to ∞, the weight is shifted from ν′ = 1 to ν′ = ν con-
tinuously. The multiplicity distribution for the full phase
space can be well described by α = −1. For the restricted
phase space, the distributions can be reproduced by the
following parameterization

α = 10−∆η , (26)

where a simple linear dependence on the pseudorapidity
interval ∆η is assumed. The results for the distribution at√
s = 540 GeV are shown in Fig. 2. We note that these

are not the results of best fit, the two parameters in the
clan model being simply fixed by the values of the average

multiplicity 〈n〉 and the dispersion D ≡
√
〈n2〉 − 〈n〉2 in

the simulations as before. The enhancement of the void
probability can be well described by this simple parame-
terization. The predictions at

√
s=10 TeV is shown in Fig.

3.
To conclude, we point out that the abundant exper-

imental evidence on the occurrence of negative binomial
distribution in high energy collisions examines mainly the

Fig. 3. The same as in Fig. 2 for charged π± at
√
s=10

TeV. The data points connected by dashed lines are from the
FRITIOF model. The solid lines are the predictions of the clan
model

distribution in the large multiplicity region. The low mul-
tiplicity region including the void probability is often over-
looked. We strongly suggest a re-examination of the mul-
tiplicity distribution focused on the void probability. We
expect the discontinuous enhancement of the void proba-
bility shown in the FRITIOF model should also be con-
firmed in the experimental data. The shift of the weighting
factors in averaging the geometric distributions could also
provide deeper understanding to the detailed dynamics of
the multiple productions.
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